Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 602(4): 619-632, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38329227

RESUMO

Sympathetic transduction is the study of how impulses of sympathetic nerve activity (SNA) affect end-organ function. Recently, the transduction of resting bursts of muscle SNA (MSNA) has been investigated and shown to have a role in the maintenance of blood pressure through changes in vascular tone in humans. In the present study, we investigate whether directly recorded resting cardiac SNA (CSNA) regulates heart rate (HR), coronary blood flow (CoBF), coronary vascular conductance (CVC), cardiac output (CO) and mean arterial pressure. Instrumentation was undertaken to record CSNA and relevant vascular variables in conscious sheep. Recordings were performed at baseline, as well as after the infusion of a ß-adrenoceptor blocker (propranolol) to determine the role of ß-adrenergic signalling in sympathetic transduction in the heart. The results show that after every burst of CSNA, there was a significant effect of time on HR (n = 10, ∆: +2.1 ± 1.4 beats min-1 , P = 0.002) and CO (n = 8, ∆: +100 ± 150 mL min-1 , P = 0.002) was elevated, followed by an increase in CoBF (n = 9, ∆: +0.76 mL min-1 , P = 0.001) and CVC (n = 8, ∆: +0.0038 mL min-1  mmHg-1 , P = 0.0028). The changes in HR were graded depending on the size and pattern of CSNA bursts. The HR response was significantly attenuated after the infusion of propranolol. Our study is the first to explore resting sympathetic transduction in the heart, suggesting that CSNA can dynamically change HR mediated by an action on ß-adrenoceptors. KEY POINTS: Sympathetic transduction is the study of how impulses of sympathetic nerve activity (SNA) affect end-organ function. Previous studies have examined sympathetic transduction primarily in the skeletal muscle and shown that bursts of muscle SNA alter blood flow to skeletal muscle and mean arterial pressure, although this has not been examined in the heart. We investigated sympathetic transduction in the heart and show that, in the conscious condition, the size of bursts of SNA to the heart can result in incremental increases in heart rate and coronary blood flow mediated by ß-adrenoceptors. The pattern of bursts of SNA to the heart also resulted in incremental increases in heart rate mediated by ß-adrenoceptors. This is the first study to explore the transduction of bursts of SNA to the heart.


Assuntos
Coração , Propranolol , Humanos , Ovinos , Animais , Propranolol/farmacologia , Coração/inervação , Pressão Arterial , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Sistema Nervoso Simpático/fisiologia , Receptores Adrenérgicos
2.
Circ Res ; 133(7): 559-571, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37641938

RESUMO

BACKGROUND: The phrase complete vagal withdrawal is often used when discussing autonomic control of the heart during exercise. However, more recent studies have challenged this assumption. We hypothesized that cardiac vagal activity increases during exercise and maintains cardiac function via transmitters other than acetylcholine. METHODS: Chronic direct recordings of cardiac vagal nerve activity, cardiac output, coronary artery blood flow, and heart rate were recorded in conscious adult sheep during whole-body treadmill exercise. Cardiac innervation of the left cardiac vagal branch was confirmed with lipophilic tracer dyes (DiO). Sheep were exercised with pharmacological blockers of acetylcholine (atropine, 250 mg), VIP (vasoactive intestinal peptide; [4Cl-D-Phe6,Leu17]VIP 25 µg), or saline control, randomized on different days. In a subset of sheep, the left cardiac vagal branch was denervated. RESULTS: Neural innervation from the cardiac vagal branch is seen at major cardiac ganglionic plexi, and within the fat pads associated with the coronary arteries. Directly recorded cardiac vagal nerve activity increased during exercise. Left cardiac vagal branch denervation attenuated the maximum changes in coronary artery blood flow (maximum exercise, control: 63.5±5.9 mL/min, n=8; cardiac vagal denervated: 32.7±5.6 mL/min, n=6, P=2.5×10-7), cardiac output, and heart rate during exercise. Atropine did not affect any cardiac parameters during exercise, but VIP antagonism significantly reduced coronary artery blood flow during exercise to a similar level to vagal denervation. CONCLUSIONS: Our study demonstrates that cardiac vagal nerve activity actually increases and is crucial for maintaining cardiac function during exercise. Furthermore, our findings show the dynamic modulation of coronary artery blood flow during exercise is mediated by VIP.


Assuntos
Acetilcolina , Coração , Animais , Ovinos , Vasos Coronários , Débito Cardíaco , Atropina/farmacologia
3.
Exp Physiol ; 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029787

RESUMO

NEW FINDINGS: What is the topic of this review? How non-adrenergic, non-cholinergic neural mechanisms regulate coronary artery blood flow. What advances does it highlight? The main coronary arteries dynamically adapt to maintain adequate blood flow to the working myocardium. There is growing evidence for an important role of non-classic neurotransmitters in regulating coronary blood flow. This review highlights current evidence for non-adrenergic, non-cholinergic control of coronary artery blood flow and our understanding of the dynamics of this system. ABSTRACT: Blood flow through the coronary vasculature is essential to maintain myocardial function. As the metabolic demand of the heart increases, so does blood flow through the coronary arteries in a dynamic and adaptive manner. Several mechanisms, including local metabolic factors, mechanical forces and autonomic neural control, regulate coronary artery blood flow. To date, neural control has predominantly focused on the classical neurotransmitters of noradrenaline and acetylcholine. However, autonomic nerves, sympathetic, parasympathetic and sensory, release a variety of neurotransmitters that can directly affect the coronary vasculature. Reduced or altered coronary blood flow and autonomic imbalance are hallmarks of most cardiovascular diseases. Understanding the role of autonomic non-adrenergic, non-cholinergic cotransmitters in coronary blood flow regulation is fundamental to furthering our understanding of this vital system and developing novel targeted therapies.

4.
Hypertension ; 79(6): 1275-1285, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35382553

RESUMO

BACKGROUND: Peripheral arterial chemoreceptors monitor the chemical composition of arterial blood and include both the carotid and aortic bodies (ABs). While the role of the carotid bodies has been extensively studied, the physiological role of the ABs remains relatively under-studied, and its role in hypertension is unexplored. We hypothesized that activation of the ABs would increase coronary blood flow in the normotensive state and that this would be mediated by the parasympathetic nerves to the heart. In addition, we determined whether the coronary blood flow response to stimulation of the ABs was altered in an ovine model of renovascular hypertension. METHODS: Experiments were conducted in conscious and anesthetized ewes instrumented to record arterial pressure, coronary blood flow, and cardiac output. Two groups of animals were studied, one made hypertensive using a 2 kidney one clip model (n=6) and a sham-clipped normotensive group (n=6). RESULTS: Activation of the ABs in the normotensive animals resulted in a significant increase in coronary blood flow, mediated, in part by a cholinergic mechanism since it was attenuated by atropine infusion. Activation of the ABs in the hypertensive animals also increased coronary blood flow (P<0.05), which was not different from the normotensive group. Interestingly, the coronary vasodilation in the hypertensive animals was not altered by blockade of muscarinic receptors but was attenuated after propranolol infusion. CONCLUSIONS: Taken together, these data suggest that the ABs play an important role in modulating coronary blood flow and that their effector mechanism is altered in hypertension.


Assuntos
Corpo Carotídeo , Hipertensão , Animais , Corpos Aórticos , Pressão Sanguínea , Células Quimiorreceptoras , Feminino , Hemodinâmica , Ovinos
5.
Int J Mol Sci ; 22(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34830184

RESUMO

The renin-angiotensin-aldosterone system (RAAS) impacts cardiovascular homeostasis via direct actions on peripheral blood vessels and via modulation of the autonomic nervous system. To date, research has primarily focused on the actions of the RAAS on the sympathetic nervous system. Here, we review the critical role of the RAAS on parasympathetic nerve function during normal physiology and its role in cardiovascular disease, focusing on hypertension. Angiotensin (Ang) II receptors are present throughout the parasympathetic nerves and can modulate vagal activity via actions at the level of the nerve endings as well as via the circumventricular organs and as a neuromodulator acting within brain regions. There is tonic inhibition of cardiac vagal tone by endogenous Ang II. We review the actions of Ang II via peripheral nerve endings as well as via central actions on brain regions. We review the evidence that Ang II modulates arterial baroreflex function and examine the pathways via which Ang II can modulate baroreflex control of cardiac vagal drive. Although there is evidence that Ang II can modulate parasympathetic activity and has the potential to contribute to impaired baseline levels and impaired baroreflex control during hypertension, the exact central regions where Ang II acts need further investigation. The beneficial actions of angiotensin receptor blockers in hypertension may be mediated in part via actions on the parasympathetic nervous system. We highlight important unknown questions about the interaction between the RAAS and the parasympathetic nervous system and conclude that this remains an important area where future research is needed.


Assuntos
Angiotensina II/metabolismo , Barorreflexo/fisiologia , Coração/fisiopatologia , Hipertensão/fisiopatologia , Sistema Nervoso Parassimpático/fisiopatologia , Sistema Renina-Angiotensina/fisiologia , Angiotensina II/farmacologia , Animais , Barorreflexo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Coração/efeitos dos fármacos , Humanos , Hipertensão/metabolismo , Sistema Nervoso Parassimpático/metabolismo , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Vasoconstritores/metabolismo , Vasoconstritores/farmacologia
6.
Front Physiol ; 12: 681135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122147

RESUMO

Carotid bodies (CBs) are peripheral chemoreceptors, which are primary sensors of systemic hypoxia and their activation produces respiratory, autonomic, and cardiovascular adjustments critical for body homeostasis. We have previously shown that carotid chemoreceptor stimulation increases directly recorded cardiac sympathetic nerve activity (cardiac SNA) which increases coronary blood flow (CoBF) in conscious normal sheep. Previous studies have shown that chemoreflex sensitivity is augmented in heart failure (HF). We hypothesized that carotid chemoreceptor stimulation would increase CoBF to a greater extent in HF than control sheep. Experiments were conducted in conscious HF sheep and control sheep (n = 6/group) implanted with electrodes to record diaphragmatic electromyography (dEMG), flow probes to record CoBF as well as arterial pressure. There was a significant increase in mean arterial pressure (MAP), CoBF and coronary vascular conductance (CVC) in response to potassium cyanide (KCN) in both groups of sheep. To eliminate the effects of metabolic vasodilation, the KCN was repeated while the heart was paced at a constant level. In this paradigm, the increase in CoBF and CVC was augmented in the HF group compared to the control group. Pre-treatment with propranolol did not alter the CoBF or the CVC increase in the HF group indicating this was not mediated by an increase in cardiac sympathetic drive. The pressor response to CB activation was abolished by pre-treatment with intravenous atropine in both groups, but there was no change in the CoBF and vascular conductance responses. Our data suggest that in an ovine model of HF, carotid body (CB) mediated increases in CoBF and CVC are augmented compared to control animals. This increase in CoBF is mediated by an increase in cardiac SNA in the control group but not the HF group.

7.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R203-R212, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33206558

RESUMO

Activation of the carotid body (CB) using intracarotid potassium cyanide (KCN) injection increases coronary blood flow (CoBF). This increase in CoBF is considered to be mediated by co-activation of both the sympathetic and parasympathetic nerves to the heart. However, whether cardiac sympathetic nerve activity (cardiac SNA) actually increases during CB activation has not been determined previously. We hypothesized that activation of the CB would increase directly recorded cardiac SNA, which would cause coronary vasodilatation. Experiments were conducted in conscious sheep implanted with electrodes to record cardiac SNA and diaphragmatic electromyography (dEMG), flow probes to record CoBF and cardiac output, and a catheter to record arterial pressure. Intracarotid KCN injection was used to activate the CB. To eliminate the contribution of metabolic demand on coronary flow, the heart was paced at a constant rate during CB chemoreflex stimulation. Intracarotid KCN injection resulted in a significant increase in directly recorded cardiac SNA frequency (from 24 ± 2 to 40 ± 4 bursts/min; P < 0.05) as well as a dose-dependent increase in mean arterial pressure (79 ± 15 to 88 ± 14 mmHg; P < 0.01) and CoBF (75 ± 37 vs. 86 ± 42 mL/min; P < 0.05). The increase in CoBF and coronary vascular conductance to intracarotid KCN injection was abolished after propranolol infusion, suggesting that the increased cardiac SNA mediates coronary vasodilatation. The pressor response to activation of the CB was abolished by pretreatment with intravenous atropine, but there was no change in the coronary flow response. Our results indicate that CB activation increases directly recorded cardiac SNA, which mediates vasodilatation of the coronary vasculature.


Assuntos
Corpo Carotídeo/efeitos dos fármacos , Circulação Coronária/efeitos dos fármacos , Coração/inervação , Cianeto de Potássio/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Pressão Arterial/efeitos dos fármacos , Corpo Carotídeo/metabolismo , Estado de Consciência , Feminino , Carneiro Doméstico , Sistema Nervoso Simpático/fisiologia , Fatores de Tempo
8.
Hypertension ; 74(4): 910-920, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31422690

RESUMO

Hypertension is associated with increased sympathetic activity. A component of this sympathoexcitation may be driven by increased signaling from sensory endings from the heart to the autonomic control areas in the brain. This pathway mediates the so-called cardiac sympathetic afferent reflex, which is also activated by coronary ischemia or other nociceptive stimuli in the heart. The cardiac sympathetic afferent reflex has been shown to be enhanced in the heart failure state and in renal hypertension. However, little is known about its role in the development or progression of hypertension or the phenotype of the sensory endings involved. To investigate this, we used the selective afferent neurotoxin, resiniferatoxin (RTX) to chronically abolish the cardiac sympathetic afferent reflex in 2 models of hypertension; the spontaneous hypertensive rats (SHRs) and AngII (angiotensin II) infusion (240 ng/kg per min). Blood pressure (BP) was measured in conscious animals for 2 to 8 weeks post-RTX. Epidural application of RTX to the T1-T4 spinal segments prevented the further BP increase in 8-week-old SHR and lowered BP in 16-week-old SHR. RTX did not affect BP in Wistar-Kyoto normotensive rats nor in AngII-infused rats. Epicardial application of RTX (50 µg/mL) in 4-week-old SHR prevented the BP increase whereas this treatment does not lower BP in 16-week-old SHR. When RTX was administered into the L2-L5 spinal segments of 16-week-old SHR, no change in BP was observed. These findings indicate that signaling via thoracic afferent nerve fibers may contribute to the hypertension phenotype in the SHR but not in the Ang II infusion model of hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Gânglios Espinais/metabolismo , Coração/inervação , Hipertensão/metabolismo , Canais de Cátion TRPV/agonistas , Angiotensina II , Animais , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Diterpenos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Hipertensão/induzido quimicamente , Masculino , Neurotoxinas/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo
9.
Free Radic Biol Med ; 141: 84-92, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31181253

RESUMO

Nuclear factor E2-related factor 2 (Nrf2) is a key transcription factor that maintains redox homeostasis by governing a broad array of antioxidant genes in response to oxidant stress. We hypothesized that overexpression of Nrf2 in the rostral ventrolateral medulla (RVLM) ameliorates sympatho-excitation in mice with coronary artery ligation-induced chronic heart failure (CHF). To address this, we overexpressed Nrf2 in the RVLM using an HIV-CamKIIa-Nrf2 lenti virus in C57BL/6 mice. In addition, we used a Lenti-Cre virus in Keap1flox/flox mice to upregulate Nrf2 non-selectively in the RVLM. Arterial blood pressure (AP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded under conscious and anesthetized conditions, respectively. Protein expression was assayed using western blotting and immunofluorescence staining. We found that (1) Nrf2 and two target proteins, NQO1 and HO-1 in the RVLM were significantly lower in CHF compared to Sham mice. Nrf2 viral transfection of the RVLM upregulated Nrf2 protein. (2) Urinary NE excretion in CHF mice was markedly attenuated following Nrf2 upregulation (812 ±â€¯133 vs 1120 ±â€¯271 ng/24hr mean. ±SE, *p < 0.05, n = 8/group). (3) In the conscious state, CHF mice overexpressing Nrf2 exhibited an enhancement in spontaneous baroreflex gain and in phenylephrine-induced baroreflex control of HR. (4) Acute experiments under anesthetisa revealed a significant decrease in basal RSNA (44.0 ± 6.5 vs 64.7 ± 8.3% of Max. *P < 0.05 n = 8/group) and enhancement in baroreflex sensitivity (Maximal gain -1.8 ± 0.3 vs 1.1 ± 0.2 of mmHg. **p < 0.01. n = 6/group) in CHF mice that were virally transfected with Nrf2 compared with CHF mice transfected with Lenti-GFP. Finally, Lenti-Cre viral overexpression of Nrf2 in Keap1flox/flox mice reduced Keap1 protein and increased Nrf2, NQO1, and HO-1 in the RVLM of Sham and CHF mice. CHF-Cre mice exhibited a significant decrease in baseline RSNA and plasma NE concentration (8.9 ± 1.1 vs 12.7 ± 0.9 ng/mL *P < 0.05 n = 6/group) as compared with CHF-GFP mice. Based on the above data, we conclude that upregulating Nrf2 selectively in the RVLM attenuates sympatho-excitation in CHF mice. Nrf2 may be an important central target for autonomic modulation in cardiovascular disease and during stress.


Assuntos
Insuficiência Cardíaca/metabolismo , Bulbo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sistema Nervoso Simpático , Animais , Antioxidantes/metabolismo , Barorreflexo , Pressão Sanguínea , Vasos Coronários/cirurgia , Ecocardiografia , Feminino , Insuficiência Cardíaca/patologia , Frequência Cardíaca , Heme Oxigenase-1/metabolismo , Hemodinâmica , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NAD(P)H Desidrogenase (Quinona)/metabolismo , Oxirredução , Estresse Oxidativo , Regulação para Cima
10.
Physiol Rep ; 6(12): e13742, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29906340

RESUMO

The sensory innervation of the lung is well known to be innervated by nerve fibers of both vagal and sympathetic origin. Although the vagal afferent innervation of the lung has been well characterized, less is known about physiological effects mediated by spinal sympathetic afferent fibers. We hypothesized that activation of sympathetic spinal afferent nerve fibers of the lung would result in an excitatory pressor reflex, similar to that previously characterized in the heart. In this study, we evaluated changes in renal sympathetic nerve activity (RSNA) and hemodynamics in response to activation of TRPV1-sensitive pulmonary spinal sensory fibers by agonist application to the visceral pleura of the lung and by administration into the primary bronchus in anesthetized, bilaterally vagotomized, adult Sprague-Dawley rats. Application of bradykinin (BK) to the visceral pleura of the lung produced an increase in mean arterial pressure (MAP), heart rate (HR), and RSNA. This response was significantly greater when BK was applied to the ventral surface of the left lung compared to the dorsal surface. Conversely, topical application of capsaicin (Cap) onto the visceral pleura of the lung, produced a biphasic reflex change in MAP, coupled with increases in HR and RSNA which was very similar to the hemodynamic response to epicardial application of Cap. This reflex was also evoked in animals with intact pulmonary vagal innervation and when BK was applied to the distal airways of the lung via the left primary bronchus. In order to further confirm the origin of this reflex, epidural application of a selective afferent neurotoxin (resiniferatoxin, RTX) was used to chronically ablate thoracic TRPV1-expressing afferent soma at the level of T1-T4 dorsal root ganglia pleura. This treatment abolished all sympatho-excitatory responses to both cardiac and pulmonary application of BK and Cap in vagotomized rats 9-10 weeks post-RTX. These data suggest the presence of an excitatory pulmonary chemosensitive sympathetic afferent reflex. This finding may have important clinical implications in pulmonary conditions inducing sensory nerve activation such as pulmonary inflammation and inhalation of chemical stimuli.


Assuntos
Vias Aferentes/fisiologia , Pulmão/inervação , Reflexo/fisiologia , Sistema Nervoso Simpático/fisiologia , Vias Aferentes/efeitos dos fármacos , Animais , Bradicinina/farmacologia , Capsaicina/farmacologia , Gânglios Espinais/fisiologia , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Rim/inervação , Masculino , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Ratos Sprague-Dawley , Reflexo/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Vagotomia , Nervo Vago/fisiologia
11.
Curr Hypertens Rep ; 20(2): 10, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29480460

RESUMO

PURPOSE OF REVIEW: The renin-angiotensin system (RAS) plays an important role in modulating cardiovascular function and fluid homeostasis. While the systemic actions of the RAS are widely accepted, the role of the RAS in the brain, its regulation of cardiovascular function, and sympathetic outflow remain controversial. In this report, we discuss the current understanding of central RAS on blood pressure (BP) regulation, in light of recent literature and new experimental techniques. RECENT FINDINGS: Studies using neuronal or glial-specifc mouse models have allowed for greater understanding into the site-specific expression and role centrally expressed RAS proteins have on BP regulation. While all components of the RAS have been identified in cardiovascular regulatory regions of the brain, their actions may be site specific. In a number of animal models of hypertension, reduction in Ang II-mediated signaling, or upregulation of the central ACE2/Ang 1-7 pathway, has been shown to reduce BP, via a reduction in sympathetic signaling and increase parasympathetic tone, respectively. Emerging evidence also suggests that, in part, the female protective phenotype against hypertension may be due to inceased ACE2 activity within cardiovascular regulatory regions of the brain, potentially mediated by estrogen. Increasing evidence suggests the importance of a central renin-angiotensin pathway, although its localization and the mechanisms involved in its expression and regulation still need to be clarified and more precisely defined. All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).


Assuntos
Pressão Sanguínea/fisiologia , Encéfalo/fisiopatologia , Hipertensão/fisiopatologia , Sistema Renina-Angiotensina/fisiologia , Animais , Feminino , Humanos , Masculino , Camundongos
12.
Hypertension ; 69(4): 625-632, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28223472

RESUMO

Reduced cardiomyocyte excitation-contraction coupling and downregulation of the SERCA2a (sarcoendoplasmic reticulum calcium ATPase 2a) is associated with heart failure. This has led to viral transgene upregulation of SERCA2a in cardiomyocytes as a treatment. We hypothesized that SERCA2a gene therapy expressed under a similar promiscuous cytomegalovirus promoter could also affect the cardiac sympathetic neural axis and promote sympathoexcitation. Stellate neurons were isolated from 90 to 120 g male, Sprague-Dawley, Wistar Kyoto, and spontaneously hypertensive rats. Neurons were infected with Ad-mCherry or Ad-mCherry-hATP2Aa (SERCA2a). Intracellular Ca2+ changes were measured using fura-2AM in response to KCl, caffeine, thapsigargin, and carbonylcyanide-p-trifluoromethoxyphenylhydrazine to mobilize intracellular Ca2+ stores. The effect of SERCA2a on neurotransmitter release was measured using [3H]-norepinephrine overflow from 340 to 360 g Sprague-Dawley rat atria in response to right stellate ganglia stimulation. Upregulation of SERCA2a resulted in greater neurotransmitter release in response to stellate stimulation compared with control (empty: 98.7±20.5 cpm, n=7; SERCA: 186.5±28.41 cpm, n=8; P<0.05). In isolated Sprague-Dawley rat stellate neurons, SERCA2a overexpression facilitated greater depolarization-induced Ca2+ transients (empty: 0.64±0.03 au, n=57; SERCA: 0.75±0.03 au, n=68; P<0.05), along with increased endoplasmic reticulum and mitochondria Ca2+ load. Similar results were observed in Wistar Kyoto and age-matched spontaneously hypertensive rats, despite no further increase in endoplasmic reticulum load being observed in the spontaneously hypertensive rat (spontaneously hypertensive rats: empty, 0.16±0.04 au, n=18; SERCA: 0.17±0.02 au, n=25). In conclusion, SERCA2a upregulation in cardiac sympathetic neurons resulted in increased neurotransmission and increased Ca2+ loading into intracellular stores. Whether the increased Ca2+ transient and neurotransmission after SERCA2A overexpression contributes to enhanced sympathoexcitation in heart failure patients remains to be determined.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Mitocôndrias/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Sistema Nervoso Simpático/metabolismo , Transmissão Sináptica/genética , Animais , Modelos Animais de Doenças , Retículo Endoplasmático/ultraestrutura , Coração/inervação , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Masculino , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Sistema Nervoso Simpático/ultraestrutura
13.
Sci Rep ; 7: 40687, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084430

RESUMO

In the present study, channelrhodopsin 2 (ChR2) was specifically introduced into murine cells expressing the Phenylethanolamine n-methyltransferase (Pnmt) gene, which encodes for the enzyme responsible for conversion of noradrenaline to adrenaline. The new murine model enabled the identification of a distinctive class of Pnmt-expressing neuroendocrine cells and their descendants (i.e. Pnmt+ cell derived cells) within the heart. Here, we show that Pnmt+ cells predominantly localized to the left side of the adult heart. Remarkably, many of the Pnmt+ cells in the left atrium and ventricle appeared to be working cardiomyocytes based on their morphological appearance and functional properties. These Pnmt+ cell derived cardiomyocytes (PdCMs) are similar to conventional myocytes in morphological, electrical and contractile properties. By stimulating PdCMs selectively with blue light, we were able to control cardiac rhythm in the whole heart, isolated tissue preparations and single cardiomyocytes. Our new murine model effectively demonstrates functional dissection of cardiomyocyte subpopulations using optogenetics, and opens new frontiers of exploration into their physiological roles in normal heart function as well as their potential application for selective cardiac repair and regeneration strategies.


Assuntos
Frequência Cardíaca , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Optogenética , Feniletanolamina N-Metiltransferase/genética , Animais , Sinalização do Cálcio , Fenômenos Eletrofisiológicos , Imunofluorescência , Expressão Gênica , Genes Reporter , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Optogenética/métodos , Feniletanolamina N-Metiltransferase/metabolismo
14.
Cardiovasc Res ; 112(3): 637-644, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27496871

RESUMO

AIMS: B-type natriuretic peptide (BNP)-natriuretic peptide receptor A (NPR-A) receptor signalling inhibits cardiac sympathetic neurotransmission, although C-type natriuretic peptide (CNP) is the predominant neuropeptide of the nervous system with expression in the heart and vasculature. We hypothesized that CNP acts similarly to BNP, and that transgenic rats (TGRs) with neuron-specific overexpression of a dominant negative NPR-B receptor would develop heightened sympathetic drive. METHODS AND RESULTS: Mean arterial pressure and heart rate (HR) were significantly (P < 0.05) elevated in freely moving TGRs (n = 9) compared with Sprague Dawley (SD) controls (n = 10). TGR had impaired left ventricular systolic function and spectral analysis of HR variability suggested a shift towards sympathoexcitation. Immunohistochemistry demonstrated co-staining of NPR-B with tyrosine hydroxylase in stellate ganglia neurons. In SD rats, CNP (250 nM, n = 8) significantly reduced the tachycardia during right stellate ganglion stimulation (1-7 Hz) in vitro whereas the response to bath-applied norepinephrine (NE, 1 µM, n = 6) remained intact. CNP (250 nM, n = 8) significantly reduced the release of 3H-NE in isolated atria and this was prevented by the NPR-B antagonist P19 (250 nM, n = 6). The neuronal Ca2+ current (n = 6) and intracellular Ca2+ transient (n = 9, using fura-2AM) were also reduced by CNP in isolated stellate neurons. Treatment of the TGR (n = 9) with the sympatholytic clonidine (125 µg/kg per day) significantly reduced mean arterial pressure and HR to levels observed in the SD (n = 9). CONCLUSION: C-type natriuretic peptide reduces cardiac sympathetic neurotransmission via a reduction in neuronal calcium signalling and NE release through the NPR-B receptor. Situations impairing CNP-NPR-B signalling lead to hypertension, tachycardia, and impaired left ventricular systolic function secondary to sympatho-excitation.


Assuntos
Coração/inervação , Peptídeo Natriurético Tipo C/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Sistema Nervoso Simpático/metabolismo , Transmissão Sináptica , Animais , Pressão Arterial , Sinalização do Cálcio , Predisposição Genética para Doença , Frequência Cardíaca , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Norepinefrina/metabolismo , Fenótipo , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores do Fator Natriurético Atrial/genética , Gânglio Estrelado/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Sístole , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda
15.
Am J Physiol Regul Integr Comp Physiol ; 305(12): R1411-20, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24005254

RESUMO

High levels of sympathetic drive in several cardiovascular diseases including postmyocardial infarction, chronic congestive heart failure and hypertension are reinforced through dysregulation of afferent input and central integration of autonomic balance. However, recent evidence suggests that a significant component of sympathetic hyperactivity may also reside peripherally at the level of the postganglionic neuron. This has been studied in depth using the spontaneously hypertensive rat, an animal model of genetic essential hypertension, where larger neuronal calcium transients, increased release and impaired reuptake of norepinephrine in neurons of the stellate ganglia lead to a significant tachycardia even before hypertension has developed. The release of additional sympathetic cotransmitters during high levels of sympathetic drive can also have deleterious consequences for peripheral cardiac parasympathetic neurotransmission even in the presence of ß-adrenergic blockade. Stimulation of the cardiac vagus reduces heart rate, lowers myocardial oxygen demand, improves coronary blood flow, and independently raises ventricular fibrillation threshold. Recent data demonstrates a direct action of the sympathetic cotransmitters neuropeptide Y (NPY) and galanin on the ability of the vagus to release acetylcholine and control heart rate. Moreover, there is as a strong correlation between plasma NPY levels and coronary microvascular function in patients with ST-elevation myocardial infarction being treated with primary percutaneous coronary intervention. Antagonists of the NPY receptors Y1 and Y2 may be therapeutically beneficial both acutely during myocardial infarction and also during chronic heart failure and hypertension. Such medications would be expected to act synergistically with ß-blockers and implantable vagus nerve stimulators to improve patient outcome.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Coração/inervação , Neuropeptídeos/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Modelos Animais de Doenças , Galanina/fisiologia , Hipertensão/fisiopatologia , Neuropeptídeo Y/fisiologia , Ratos , Ratos Endogâmicos SHR
16.
Am J Physiol Heart Circ Physiol ; 305(7): H980-6, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23913706

RESUMO

Recent studies in prehypertensive spontaneously hypertensive rats (SHR) have shown larger calcium transients and reduced norepinephrine transporter (NET) activity in cultured stellate neurons compared with Wistar-Kyoto (WKY) controls, although the functional significance of these results is unknown. We hypothesized that peripheral sympathetic responsiveness in the SHR at 4 wk of age would be exaggerated compared with the WKY. In vivo arterial pressure (under 2% isoflurane) was similar in SHRs (88 ± 2/50 ± 3 mmHg, n = 18) compared with WKYs (88 ± 3/49 ± 4 mmHg, n = 20). However, a small but significant (P < 0.05) tachycardia was observed in the young SHR despite the heart rate response to vagus stimulation (3 and 5 Hz) in vivo being similar (SHR: n = 12, WKY: n = 10). In isolated atrial preparations there was a significantly greater tachycardia during right stellate stimulation (5 and 7 Hz) in SHRs (n = 19) compared with WKYs (n = 16) but not in response to exogenous NE (0.025-5 µM, SHR: n = 10, WKY: n = 10). There was also a significantly greater release of [(3)H]NE to field stimulation (5 Hz) of atria in the SHR (SHR: n = 17, WKY: n = 16). Additionally, plasma levels of neuropeptide Y sampled from the right atria in vivo were also higher in the SHR (ELISA, n = 12 for both groups). The difference in [(3)H]NE release between SHR and WKY could be normalized by the NET inhibitor desipramine (1 µM, SHR: n = 10, WKY: n = 8) but not the α2-receptor antagonist yohimbine (1 µM, SHR: n = 7, WKY: n = 8). Increased cardiac sympathetic neurotransmission driven by larger neuronal calcium transients and reduced NE reuptake translates into enhanced cardiac sympathetic responsiveness at the end organ in prehypertensive SHRs.


Assuntos
Coração/inervação , Hipertensão/fisiopatologia , Pré-Hipertensão/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Inibidores da Captação Adrenérgica/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Pressão Arterial , Sinalização do Cálcio , Modelos Animais de Doenças , Estimulação Elétrica , Frequência Cardíaca , Hipertensão/sangue , Masculino , Neuropeptídeo Y/sangue , Norepinefrina/metabolismo , Pré-Hipertensão/sangue , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Gânglio Estrelado/metabolismo , Gânglio Estrelado/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Fatores de Tempo , Nervo Vago/metabolismo , Nervo Vago/fisiopatologia
17.
Hypertension ; 61(1): 187-93, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23172922

RESUMO

Hypertension is associated with enhanced cardiac sympathetic transmission, although the exact mechanisms underlying this are still unknown. We hypothesized that defective function of the norepinephrine uptake transporter (NET) may contribute to the sympathetic phenotype of the spontaneously hypertensive rat, and that this may occur before the development of hypertension itself. The dynamic kinetics of NET were monitored temporally using a novel fluorescent assay of the transporter in cultured postganglionic sympathetic neurons from the cardiac stellate ganglion, the superior cervical ganglion, the celiac ganglia/superior mesenteric ganglia, and the renal sympathetic chain. All NET activity was blocked by desipramine. NET rate was significantly impaired in cardiac stellate sympathetic neurons from the prehypertensive spontaneously hypertensive rat compared with age-matched normotensive Wistar-Kyoto rats. A similar response was seen in hypertensive spontaneously hypertensive rats stellate sympathetic neurons. However, no reduction in transporter rate was observed at either age in the other major noncardiac sympathetic ganglia. Depolarization of cardiac stellate neurons by electrical field stimulation further potentiated the difference in transporter rate observed between the hypertensive and normotensive rats at both developmental ages. In conclusion, dysregulation of the norepinephrine transporter in the hypertensive rat is ganglion-specific, where NET impairment in the stellate neurons may contribute to the increased cardiac norepinephrine spillover seen in hypertension.


Assuntos
Gânglios Simpáticos/metabolismo , Hipertensão/metabolismo , Neurônios/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Sistema Nervoso Simpático/metabolismo , Inibidores da Captação Adrenérgica/farmacologia , Animais , Células Cultivadas , Desipramina/farmacologia , Gânglios Simpáticos/efeitos dos fármacos , Gânglios Simpáticos/fisiopatologia , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sistema Nervoso Simpático/fisiopatologia , Tirosina 3-Mono-Oxigenase/metabolismo
18.
J Mol Cell Cardiol ; 52(3): 667-76, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22172449

RESUMO

The autonomic phenotype of congestive cardiac failure is characterised by high sympathetic drive and impaired vagal tone, which are independent predictors of mortality. We hypothesize that impaired bradycardia to peripheral vagal stimulation following high-level sympathetic drive is due to sympatho-vagal crosstalk by the adrenergic co-transmitters galanin and neuropeptide-Y (NPY). Moreover we hypothesize that galanin acts similarly to NPY by reducing vagal acetylcholine release via a receptor mediated, protein kinase-dependent pathway. Prolonged right stellate ganglion stimulation (10 Hz, 2 min, in the presence of 10 µM metoprolol) in an isolated guinea pig atrial preparation with dual autonomic innervation leads to a significant (p<0.05) reduction in the magnitude of vagal bradycardia (5 Hz) maintained over the subsequent 20 min (n=6). Immunohistochemistry demonstrated the presence of galanin in a small number of tyrosine hydroxylase positive neurons from freshly dissected stellate ganglion tissue sections. Following 3 days of tissue culture however, most stellate neurons expressed galanin. Stellate stimulation caused the release of low levels of galanin and significantly higher levels of NPY into the surrounding perfusate (n=6, using ELISA). The reduction in vagal bradycardia post sympathetic stimulation was partially reversed by the galanin receptor antagonist M40 after 10 min (1 µM, n=5), and completely reversed with the NPY Y(2) receptor antagonist BIIE 0246 at all time points (1 µM, n=6). Exogenous galanin (n=6, 50-500 nM) also reduced the heart rate response to vagal stimulation but had no effect on the response to carbamylcholine that produced similar degrees of bradycardia (n=6). Galanin (500 nM) also significantly attenuated the release of (3)H-acetylcholine from isolated atria during field stimulation (5 Hz, n=5). The effect of galanin on vagal bradycardia could be abolished by the galanin receptor antagonist M40 (n=5). Importantly the GalR(1) receptor was immunofluorescently co-localised with choline acetyl-transferase containing neurons at the sinoatrial node. The protein kinase C inhibitor calphostin (100 nM, n=6) abolished the effect of galanin on vagal bradycardia whilst the protein kinase A inhibitor H89 (500 nM, n=6) had no effect. These results demonstrate that prolonged sympathetic activation releases the slowly diffusing adrenergic co-transmitter galanin in addition to NPY, and that this contributes to the attenuation in vagal bradycardia via a reduction in acetylcholine release. This effect is mediated by GalR(1) receptors on vagal neurons coupled to protein kinase C dependent signalling pathways. The role of galanin may become more important following an acute injury response where galanin expression is increased.


Assuntos
Acetilcolina/metabolismo , Bradicardia/metabolismo , Galanina/farmacologia , Coração/efeitos dos fármacos , Coração/inervação , Nervo Vago/efeitos dos fármacos , Animais , Neurônios Colinérgicos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Feminino , Galanina/genética , Galanina/metabolismo , Expressão Gênica , Cobaias , Átrios do Coração/inervação , Átrios do Coração/metabolismo , Neuropeptídeo Y/metabolismo , Neuropeptídeo Y/farmacologia , Somação de Potenciais Pós-Sinápticos/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Receptores de Galanina/antagonistas & inibidores , Receptores de Galanina/genética , Receptores de Galanina/metabolismo , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Gânglio Estrelado/metabolismo
19.
Br J Pharmacol ; 159(4): 797-807, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20136837

RESUMO

BACKGROUND AND PURPOSE: To validate a fluorescence approach for monitoring norepinephrine transporter (NET) transport rate in mature sympathetic terminals, and to determine how prejunctional muscarinic receptors affect NET rate. EXPERIMENTAL APPROACH: Confocal imaging of a fluorescent NET substrate [neurotransmitter transporter uptake assay (NTUA)] as it accumulates in the mature sympathetic nerve terminals of the mouse isolated vas deferens. Fluorescence recovery after photobleaching (FRAP), enhanced green fluorescence protein (EGFP)-transgenic mice and contraction studies were also used. KEY RESULTS: NTUA fluorescence accumulated linearly in nerve terminals, an effect that was prevented with NET inhibition with desipramine (1 microM). Such accumulation was reversed by amphetamine (10 microM), which is known to reverse the direction of transport of NET substrates. NTUA labelling was not present in cholinergic terminals (identified using EGFP fluorescence expressed in transgenic mice under a choline acetyltransferase promoter). FRAP experiments, altered nerve terminal distribution with reserpine pretreatment and co-imaging in terminals filled with a cytoplasmic marker (Alexa 594 dextran) indicated that the NTUA labelling was largely confined to vesicles within varicosities; vesicular exchange between varicosities was rare. The rate of NTUA accumulation was slower in the presence of the muscarinic agonist carbachol (10 microM) demonstrating muscarinic inhibition of NET rate. CONCLUSIONS AND IMPLICATIONS: A straightforward protocol now exists to monitor NET transport rate at the level of the single nerve terminal varicosity, providing a useful tool to understand the physiology of NET regulation, the action of NET inhibitors on mature sympathetic terminals, dynamic vesicular tracking and to identify sympathetic terminals from mixed terminal populations in living organs.


Assuntos
Fibras Adrenérgicas/metabolismo , Corantes Fluorescentes/metabolismo , Microscopia Confocal , Imagem Molecular , Técnicas de Sonda Molecular , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ducto Deferente/inervação , Fibras Adrenérgicas/efeitos dos fármacos , Inibidores da Captação Adrenérgica/farmacologia , Anfetamina/farmacologia , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Fibras Colinérgicas/metabolismo , Desipramina/farmacologia , Dextranos/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Contração Muscular , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Compostos Orgânicos/metabolismo , Terminações Pré-Sinápticas/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Receptores Pré-Sinápticos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Reserpina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...